Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Biomater Sci Eng ; 10(3): 1302-1322, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38346448

RESUMO

The treatment of bone defects has been a long-standing challenge in clinical practice. Among the various bone tissue engineering approaches, there has been substantial progress in the development of drug delivery systems based on functional drugs and appropriate carrier materials owing to technological advances in recent years. A large number of materials based on functional nanocarriers have been developed and applied to improve the complex osteogenic microenvironment, including for promoting osteogenic activity, inhibiting osteoclast activity, and exerting certain antibacterial effects. This Review discusses the physicochemical properties, drug loading mechanisms, advantages and disadvantages of nanoparticles (NPs) used for constructing drug delivery systems. In addition, we provide an overview of the osteogenic microenvironment regulation mechanism of drug delivery systems based on nanoparticle (NP) carriers and the construction strategies of drug delivery systems. Finally, the advantages and disadvantages of NP carriers are summarized along with their prospects and future research trends in bone tissue engineering. This Review thus provides advanced strategies for the design and application of drug delivery systems based on NPs in the treatment of bone defects.


Assuntos
Sistemas de Liberação de Fármacos por Nanopartículas , Nanopartículas , Sistemas de Liberação de Medicamentos , Regeneração Óssea/fisiologia , Nanopartículas/uso terapêutico , Nanopartículas/química , Engenharia Tecidual
2.
Front Bioeng Biotechnol ; 12: 1342590, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38344289

RESUMO

Titanium alloy materials are commonly used in orthopedic clinical treatments. However, conventional titanium implants usually lead to insufficient bone regeneration and integration because of mismatched biomechanics and poor bioactivities. To tackle these challenges, a porous titanium alloy scaffold with suitable mechanical properties was prepared using three-dimensional (3D) printing, and then an adipose-derived mesenchymal stem cell (ADSC) loaded platelet-rich plasma (PRP) gel was placed into the pores of the porous scaffold to construct a bioactive scaffold with dual functions of enhancing angiogenesis and osteogenesis. This bioactive scaffold showed good biocompatibility and supported cell viability proliferation and morphology of encapsulated ADSCs. Osteogenic and angiogenic growth factors in the PRP gel promoted the migration and angiogenesis of human umbilical vein endothelial cells (HUVECs) in vitro and enhanced osteogenic-related gene and protein expression in ADSCs, thus promoting osteogenic differentiation. After implantation into the femoral defects of rabbits, the bioactive scaffold promoted vascular network formation and the expression of osteogenesis-related proteins, thus effectively accelerating bone regeneration. Therefore, the osteogenic and angiogenic bioactive scaffold comprising a 3D printed porous titanium alloy scaffold, PRP, and ADSCs provides a promising design for orthopedic biomaterials with clinical transformation prospects and an effective strategy for bone defect treatment.

3.
Front Bioeng Biotechnol ; 11: 1303678, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37954022

RESUMO

Vertebral compression fractures are becoming increasingly common with aging of the population; minimally invasive materials play an essential role in treating these fractures. However, the unacceptable processing-performance relationships of materials and their poor osteoinductive performance have limited their clinical application. In this review, we describe the advances in materials used for minimally invasive treatment of vertebral compression fractures and enumerate the types of bone cement commonly used in current practice. We also discuss the limitations of the materials themselves, and summarize the approaches for improving the characteristics of bone cement. Finally, we review the types and clinical efficacy of new vertebral implants. This review may provide valuable insights into newer strategies and methods for future research; it may also improve understanding on the application of minimally invasive materials for the treatment of vertebral compression fractures.

4.
Colloids Surf B Biointerfaces ; 225: 113255, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36924650

RESUMO

Bacterial bone infection in open fractures is an urgent problem to solve in orthopedics. Antimicrobial peptides (AMPs), as a part of innate immune defense, have good biocompatibility. Their antibacterial mechanism and therapeutic application against bacteria have been widely studied. Compared with traditional antibiotics, AMPs do not easily cause bacterial resistance and can be a reliable substitute for antibiotics in the future. Therefore, various physical and chemical strategies have been developed for the combined application of AMPs and bioactive materials to infected sites, which are conducive to maintaining the local stability of AMPs, reducing many complications, and facilitating bone infection resolution. This review explored the molecular structure, function, and direct and indirect antibacterial mechanisms of AMPs, introduced two important AMPs (LL-37 and ß-defensins) in bone tissues, and reviewed advanced AMP loading strategies and different bioactive materials. Finally, the latest progress and future development of AMPs-loaded bioactive materials for the promotion of bone infection repair were discussed. This study provided a theoretical basis and application strategy for the treatment of bone infection with AMP-loaded bioactive materials.


Assuntos
Peptídeos Catiônicos Antimicrobianos , Infecções Bacterianas , Humanos , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/uso terapêutico , Peptídeos Catiônicos Antimicrobianos/química , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Antibacterianos/química , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/microbiologia , Bactérias
5.
Front Bioeng Biotechnol ; 11: 1117647, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36793443

RESUMO

Drug delivery systems composed of osteogenic substances and biological materials are of great significance in enhancing bone regeneration, and appropriate biological carriers are the cornerstone for their construction. Polyethylene glycol (PEG) is favored in bone tissue engineering due to its good biocompatibility and hydrophilicity. When combined with other substances, the physicochemical properties of PEG-based hydrogels fully meet the requirements of drug delivery carriers. Therefore, this paper reviews the application of PEG-based hydrogels in the treatment of bone defects. The advantages and disadvantages of PEG as a carrier are analyzed, and various modification methods of PEG hydrogels are summarized. On this basis, the application of PEG-based hydrogel drug delivery systems in promoting bone regeneration in recent years is summarized. Finally, the shortcomings and future developments of PEG-based hydrogel drug delivery systems are discussed. This review provides a theoretical basis and fabrication strategy for the application of PEG-based composite drug delivery systems in local bone defects.

6.
Front Bioeng Biotechnol ; 10: 952670, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36199361

RESUMO

The large incidence of bone defects in clinical practice increases not only the demand for advanced bone transplantation techniques but also the development of bone substitute materials. A variety of emerging bone tissue engineering materials with osteogenic induction ability are promising strategies for the design of bone substitutes. MicroRNAs (miRNAs) are a class of non-coding RNAs that regulate intracellular protein expression by targeting the non-coding region of mRNA3'-UTR to play an important role in osteogenic differentiation. Several miRNA preparations have been used to promote the osteogenic differentiation of stem cells. Therefore, multiple functional bone tissue engineering materials using miRNA as an osteogenic factor have been developed and confirmed to have critical efficacy in promoting bone repair. In this review, osteogenic intracellular signaling pathways mediated by miRNAs are introduced in detail to provide a clear understanding for future clinical treatment. We summarized the biomaterials loaded with exogenous cells engineered by miRNAs and biomaterials directly carrying miRNAs acting on endogenous stem cells and discussed their advantages and disadvantages, providing a feasible method for promoting bone regeneration. Finally, we summarized the current research deficiencies and future research directions of the miRNA-functionalized scaffold. This review provides a summary of a variety of advanced miRNA delivery system design strategies that enhance bone regeneration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...